Implementation Of Fuzzy Logics To Design MPPT Controller For Photovoltaic Systems Using Matlab

Sarfraz Ahmed 1, Arvind Kumar Pandey 2

1 M. Tech. Scholar, NIET, NIMS UNIVERSITY, Jaipur, Rajasthan-303121, India
ahmedsafroo1988@gmail.com

2 A. P, Deptt. of EE, NIET, NIMS UNIVERSITY, Jaipur, Rajasthan-303121, India
arvindpandey10@gmail.com

Abstract
The cell has optimum operating point to be able to get maximum power. To obtain Maximum Power from photovoltaic array, photovoltaic power system usually requires Maximum Power Point Tracking (MPPT) controller. This thesis research work will provide a small power photovoltaic control system based on fuzzy control with FPGA technology design and implementation for MPPT. The proposed maximum power point tracking controller for photovoltaic system is tested using model designed by Matlab/Simulink program with graphical user interface (GUI) for entering the parameters of any array model using information from its datasheet. Simulation and experimental results show that performance of the fuzzy controller with FPGA in a maximum power tracking of a photovoltaic array can be made use of in several photovoltaic products and obtain satisfied result. The resultant system is capable and satisfactory in terms of fastness and dynamic performance. The results also indicate that the control system works without steady-state error and has the ability of tracking MPPs rapid and accurate which is useful for the sudden changes in the atmospheric condition.

Keywords: Fuzzy Logic, MPPT, FPGA, GUI, Matlab/Simulink.

1. Introduction
In recent times, due to its development and cost decline, PV system becomes a resourceful solution to the environmental problem.

On the other hand, the development for improving the efficiency of the PV system is still a demanding field of research. PV system cannot be modeled as an invariable DC current source since its output power is assorted depending on the temperature, load current, and irradiation. In general, MPPT is adopted to track the maximum power point in the PV system. The effectiveness of MPPT depends on both the MPPT control algorithm and the MPPT circuit [1]. The MPPT control algorithm is generally functional in the DC-DC converter, which is usually used as the MPPT circuit.

The MATLAB software is used to design the fuzzy logics to attain MPPT controller for a photovoltaic cell. Matlab simulation program is used to create the fuzzy logics because of their accuracy and fast generating results. To process my study in Matlab I will use the simple logic operations as input of MPPT controller design. The controller will use the GUI of Matlab to generate output window for tracking the maximum power.

The most accepted approach of implementing fuzzy controller is by means of a general-purpose microprocessor or microcontroller. Microprocessor based controllers are more economical, but often face difficulties in dealing with control systems that need high dispensation and input/output managing speeds [2]. Rapid advances in digital technologies have given designers the choice of implementing a controller on a range of Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD), etc.

2. Photovoltaic Cell
Numerous requisitions identified with situating frameworks are, no doubt actualized with stepper engines. One of the principle preferences of stepper engines is the solid connection between electrical beats and revolution discrete edge steps [3].

As known by numerous scientists, the created current relies on upon sunlight based irradiance, temperature, and load current. The typical equivalent circuit of PV cell is shown in Fig. 1.
The basic equations describing the I-V characteristic of the PV model are given in the following equations:

\[
0 = I_{SC} - I_D - V_D/R_p - I_{PV} \quad (1)
\]

\[
I_D = I_{ph} e^{V_D/(N V_T) - 1} \quad (2)
\]

\[
V_{PV} = V_D - R_S I_{PV} \quad (3)
\]

Where:
- \(I_{PV} \) is the cell current (A).
- \(I_{SC} \) is the light generated current (A).
- \(I_D \) is the diode saturation current (A).
- \(R_s \) is the cell series resistance (ohms).
- \(R_p \) is the cell shunt resistance (ohms).
- \(V_D \) is the diode voltage (V).
- \(V_T \) is the temperature voltage (V).
- \(V_{PV} \) is the cell voltage (V).

3. Fuzzy Logic

The fuzzy theory based on fuzzy sets and fuzzy algorithms offers a universal method of expressing linguistic rules so that they may be processed swiftly. The advantage of the fuzzy logic control is that it does not severely need any arithmetical model of the plant. It is based on plant operator knowledge, and it is very simple to be relevant. For this reason, many composite systems can be controlled without perceptive the exact mathematical model of the plant [4]. In accumulation, fuzzy logic simplifies dealing with nonlinearities in systems [5]. The excellent of using fuzzy logic control is that the linguistic system description becomes the direct algorithm.

An essential provision may portray sub-ranges of a nonstop variable. For example, temperature estimation for non-freezing stopping devices may have a few separate participation capacities characterizing specific temperature extents required to control the brakes legitimately.

In this image, the meanings of the expressions cold, warm, and hot are represented by functions mapping a temperature scale. A point on that scale has three "truth values"—one for each of the three functions. The vertical line in the image represents a particular temperature that the three arrows (truth values) gauge. Since the red arrow points to zero, this temperature may be interpreted as "not hot". The orange arrow (pointing at 0.2) may describe it as "slightly warm" and the blue arrow (pointing at 0.8) "fairly cold".

4. MPPT Controller Design

In beam of the photovoltaic cell, energy can exchange the strength of sunlight photons to the electrical energy. Since the measure of transformed energy produced by a sun powered cell is little, just about 45 milliwatts, they must be sorted out and introduced in arrangement or parallel to prepare a helpful extent of electrical energy whether for industry or domestic use [6]. The nonlinear and exponential connection between current and voltage of a PV module is depicted by below equations. The generated current by a solar cell is obtained based on the equation in below Equation 1 and 2:

\[
I_{ph} = (I_{ph, n} + k_i \Delta T) G/G_n \quad (1)
\]

Where, \(I_{ph} \) is called photocurrent generated by the influence of solar irradiation and cell’s temperature. \(\Delta T \) is the difference of temperature from the reference STC (\(T_0 = 25^\circ C \)). G is the insulation and

Fig. 1: Typical circuit of PV solar cell

Fig. 2: Fuzzy logic temperature

Fig. 3: Fuzzy logic Controller
G₀ is its normal rated value which is equal to 100 mW m\(^{-2}\). While kᵢ is the temperature coefficient of short circuit current. The main equation of a PV cell is as follow:

\[I_c = I_{ph} - I_0 \left[\exp \left(\frac{V_c + R_s I_c}{m V_t} \right) - 1 \right] \] (2)

Where, Iₖ and Vₖ are the output current and voltage of the cell respectively. I₀ is the diode reverse saturation current and Rₛ is the series resistor modeled for the cell.

Vₜ is called temperature voltage and it is applied 25mV and m is the diode factor which is equal to 1.5 in practice.

The voltage and current of the PV panel are measured instantly and connected to the MATLAB software by a DAQ card. Then, the power is calculated and saved in a vector [7]. The input variables of the Fuzzy logic controller are created based on the Equations (1) and (2). The power functions is generated as follows

\[e(t) = \frac{\Delta P(t)}{\Delta V(t)} = \frac{(P(t) - P(t-1))}{(V(t) - V(t-1))} \] (4)

5. Result and Discussion

Coordinating FPGA in a MPPT control framework gives various favorable circumstances. To meet execution prerequisites, FPGAs are alluring since their execution can without much of a stretch surpass the execution of microcontrollers and DSPs. On account of their high logic limit, FPGAs could be adjusted to control MPPT for multi-divert frameworks in parallel without forcing complex correspondence between the distinct controls of each one channel [8].

Fig. 6 shows the performance of the PV system using FLC and other existing (P&O) algorithms under fast changing of irradiance. The MPPT using FLC gives the results better than the P&O in several areas of the tracking curve.

6. Conclusions

This paper presents an intellectual control strategy of MPPT for the PV system using the FLC. Simulation results illustrate that the proposed MPPT can track the MPP faster when compared to the conservative P&O method. In conclusion, the projected MPPT using fuzzy logic can advance the performance of the system. For the future work, we propose to implement the planned technique in the real PV system.
In conclusion, the projected MPPT using fuzzy logic can advance the performance of the system. For the future work, we propose to implement the planned technique in the real PV system.

References

Biography

Sarfraz Ahmed, an Engineering graduate in Electronics and Communication Engineering from Baba Ghulam Shah Badshah University, currently pursuing master’s degree in Electrical Engineering from NIMS University, Jaipur, India.

Arvind Kumar Pandey, Assistant Professor in the department of Electrical Engineering, NIMS University, Jaipur.